Машины постоянного тока Проводниковые материалы Полупроводниковые материалы Туннельный диод Диэлектрик

Курс лекций и задач по физике

Энергия электромагнитного поля.

Баланс энергий электромагнитного поля.

 Как и любая форма материи, электромагнитное поле обладает энергией, которая может распространяться в пространстве и преобразоваться в другие виды энергии.

 Сформулируем уравнение баланса электромагнитного поля применительно к некоторому объему V, ограниченному поверхностью S. Пусть, в этом объеме, за счет сторонних источников, выделяется электромагнитная энергия. Из общефизических соображений, очевидно, что мощность сторонних источников будет расходоваться на потери, на изменение энергии и частично будет рассеиваться на поверхности S, уходя во внешнее пространство. Реактивную мощность потребителей определяют как произведение квадрата тока реактивного элемента на его сопротивление.

 Будем полагать, что среда в объеме V однородная и изотропная. Мощность в объеме V выделяется за счет протекания сторонних токов, в дальнейшем будем пользоваться известными материальными уравнениями:

   (1)

; ;  (2)

Материальные уравнения в форме (2) не позволяют учесть потери связанные с явлением поляризации и намагничивания вещества. Уравнение баланса в форме (1) дает качественное представление о балансе энергии. Для получения уравнения необходимо перейти к векторам электромагнитного поля, т.е. воспользоваться уравнениями Максвелла. Для получения количественного соотношения обратимся к уравнениям Максвелла.

Запишем первое уравнение Максвелла с учетом сторонних токов:

 (3)

Размерность входящих в (3) составляющих . Они являются векторными величинами.

Для получения уравнения, аналогичного (1), надо уравнение (3) преобразовать в скалярное и обеспечить размерность слагаемых в Ваттах. Указанный алгоритм можно реализовать, если каждое из слагаемых умножить скалярно на  и проинтегрировать по объему.

Умножим все составляющие на Е, получим:

(4)

Преобразовав левую часть (4) используем известное векторное тождество:. Из полученного тождества вытекает следующее выражение: (5)

 Выразим,  используя второе уравнение Максвелла:

;  (6)

Подставляя правую часть (6) в левую часть (4) получим:

 (7)

 Преобразуем предыдущее выражение следующим образом:

Также (7) можно записать следующим образом:

 (8)

 (9)

 

 В последнем соотношении (9) мы сделаем следующее:

поменяем порядок дифференцирования по времени, и интегрирования по объему.

При интегрировании по объему воспользуемся теоремой Остроградского - Гаусса.

 

 Для цилиндрического проводника с током I: .

 Для элементарного цилиндрического проводника, концы которого перпендикулярны линиям тока:

 (10)

 Для произвольного объема:

 (11)

 В выражении (11) первый интеграл это мощность потерь.

В левой части (9) стоит мощность, выделяемая сторонними токами в объеме V. Ток проводимости, который представляет собой упорядоченное движение заряженных частиц, отдает энергию электромагнитного поля, если частицы попадают в тормозящее электромагнитное поле.

Для того, чтобы электромагнитное поле было тормозящим необходимо чтобы скалярное произведение удовлетворяло следующему условию: .

При этом левая часть (9) становится положительной величиной.

Рассмотрим второе слагаемое правой части. Будем полагать, что поверхность S окружающая V является идеально проводящей

и проводимость среды в объеме равна нулю.

 , , ,

 По условию поверхность S является идеально проводящей.

 При этом уравнение баланса имеет следующий вид:

 (12)

т.е. в рассматриваемом случае мощность сторонних источников может расходоваться на изменение энергии внутри объема. В правой части выражения (12) мы получили скорость изменения энергии .

(13)

 

 в V=>

(14)

В этом случае мощность сторонних токов рассеиваясь на поверхности S уходит во внешнее пространство. Таким образом, мы получили, что уравнение (9) полностью идентично формуле (1).

Соотношение (9) было сформулировано Поинтингом (уравнение баланса энергии электромагнитного поля – теорема Пойнтинга).

Проанализируем несколько частных случаев,

которые следуют из теоремы Пойнтинга.

1.Энергия может поступать в объем V не только за счет сторонних источников. Поток энергии, определяемой интегралом , может быть направлен из внешнего пространства внутрь объема V.

2. Сторонние источники могут не только отдавать энергию, а также вбирать энергию электромагнитного поля. Поток заряженных частиц вбирает энергию электромагнитного поля, если этот поток попадает в ускоряющее электрическое поле. При этом скалярное произведение , а левая часть в соотношении (9) становится отрицательной величиной.

3. Пусть, поток энергии, определяемой последним слагаемым в соотношении (9), направлен внутрь объема, причем, мощность, которая поступает, таким образом, расходуется на джоулевы потери и вбирается сторонним источником так, что энергия внутри объема V остается неизменной. В этом случае соотношение (9) преобразуется к виду (15)

(15)

Так как слева стоит полная поступающая через поверхность энергия, то вектор  можно трактовать как плотность потока энергии (вектор Пойнтинга).

Вектор Пойнтинга равняется пределу отношения энергии, проходящей за время DТ, через поверхность DS, перпендикулярно направлению распространения энергии, при DS и DТ стремящихся к нулю. В изотропных средах направление  совпадает с направлением распространения энергии.

Плотность энергии электромагнитного поля

Уравнения Максвелла для монохроматического поля. Метод комплексных амплитуд. Любые переменные электромагнитные процессы можно представить в виде дискретного или непрерывного спектра гармонических электромагнитных полей. Поэтому в дальнейшем будем анализировать гармонические электромагнитные процессы (монохроматические), так как сигнал любой сложности можно представить как суперпозицию гармонических процессов. Обычно используют метод комплексных амплитуд.

Уравнения баланса для комплексной мощности. В радиотехнике часто пользуются понятием комплексной мощности. Так, если рассматривается гармонический процесс, то комплексную мощность сторонних источников можно записать

Теорема единственности для внутренней и внешней задач электродинамики. Уравнения Максвелла являются дифференциальными уравнениями в частных производных, поэтому они допускают множество решений. Из общефизических соображений, очевидно, что если полностью повторять условия опытов, то будем получать одно и то же распространение электромагнитного поля. Для обеспечения единственности решения электродинамических задач электромагнитное поле должно удовлетворять не только уравнениям Максвелла, но также должно удовлетворять ряду дополнительных условий. Они называются условиями единственности решения уравнений Максвелла. Выводы и доказательства формулируются теоремой единственности.


На главную