Лабораторные работы по электротехнике Изучение метода компенсации Изучение работы полупроводниковых выпрямителей Изучение кенотронного выпрямителя Изучение колебательного контура Изучение цепи переменного тока

Постоянный ток Лабораторные работы

фВыполнения лабораторных работ является важной частью учебного процесса, преследующей цель более глубокого усвоения теоретических положений курса и приобретения экспериментальных навыков.

Электрическое смещение. Теорема Гаусса для электростатического поля в диэлектрике

 Из предыдущего раздела следует, что напряженность поля Е при переходе из вакуума в диэлектрик изменяется скачкообразно. Такой же эффект будет наблюдаться при переходе из одного диэлектрика в другой. Скачкообразное изменение вектора , обусловленное его зависимостью от e, затрудняет расчет полей при решении ряда задач. Поэтому для характеристики электрического поля целесообразно внести векторную величину , которая не зависела бы от e. Этот вектор , он называется вектором электрического смещения или электрической индукции. Подставим в последнее соотношение e = 1+æ и получим

.

 Обратимся вновь к рисунку 1.19. Внешнее поле  создается свободными зарядами заряженных поверхностей. Внутри диэлектрика действует также поле связанных зарядов, т.е. зарядов, входящих в состав атомов и молекул диэлектрика. Заряды, не связанные с перечисленными выше частицами диэлектрика, называют свободными. Это: а) заряды частиц, способных перемещаться под действием электрического поля на макроскопические расстояния (электронов проводимости в металлах, электронов в вакууме, ионов в электролитах и т.п.); б) положительные заряды атомных остатков в металлах; в) избыточные заряды, сообщенные телу и нарушающие его электрическую нейтральность (например, заряды, нанесенные извне на поверхность диэлектрика).

 Электрическое поле в диэлектрической среде создается как свободными, так и связанными зарядами. Первичным источником поля являются свободные заряды, а поле связанных зарядов возникает в результате поляризации диэлектрика при помещении его в поле свободных зарядов. Причем, поле связанных зарядов может вызвать перераспределение свободных зарядов и изменить поле этих зарядов.

 Поэтому вектор  характеризует электростатическое поле, создаваемое свободными зарядами в вакууме (e=1), но при таком их распределении в пространстве, какое будет при наличии диэлектрика. Линии вектора  начинаются и заканчиваются на любых зарядах - свободных и связанных, а линии вектора  - только на свободных зарядах и они проходят диэлектрик не прерываясь. Смысл введения вектора электрического смещения состоит в том, что поток вектора  через любую замкнутую поверхность определяется только свободными зарядами, а не всеми зарядами, находящимися внутри объема, ограничивающего данную поверхность S (как это было с потоком ). Это позволяет не рассматривать связанные (поляризованные) заряды и упрощает решение многих задач.

 Поток вектора  через произвольную замкнутую поверхность S равен , где Dn - проекция вектора   на нормаль  к площадке dS. Теорема Гаусса для электростатического поля в диэлектрике выводится аналогично выводу теоремы для вакуума, в результате получаем , где в правой части сумма свободных зарядов.

Сегнетоэлектрики

В 1930-1934 г. И.В.Курчатов и П.П.Кобеко обнаружили и изучили группу диэлектриков, обладающих необычными диэлектрическими свойствами. Первоначально эти свойства были обнаружены в кристаллах сегнетовой соли и, поэтому, подобные по свойствам диэлектрики получили название сегнетоэлектриков (или ферроэлектриков).

Подпись:  Рис.1.20. Кривая гистерезиса.Первая особенность сегнетоэлектриков заключается в том, что в некотором температурном интервале их диэлектрическая проницаемость достигает огромных значений (около 10000). Вторым важным свойством является нелинейная зависимость электрического смещения и вектора поляризации от напряженности поля. Это объясняется зависимостью æ и e от , которая для разных сегнетоэлектриков имеет разный характер. Третья особенность сегнетоэлектриков - это явление диэлектрического гистерезиса («hysteresis» по-гречески означает запаздывание). На рис.1.20 представлена зависимость численного значения вектора поляризации  от напряженности внешнего поля . С увеличением Е значение Ре растет и достигает насыщения (в точке а). Если затем постепенно уменьшать Е до нуля, то Ре, уменьшаясь, достигнет значения Рео (остаточная поляризация). Чтобы ее снять, потребуется поле обратного направления (-Ек). Величина Ек называется коэрцитивной силой. При дальнейшем циклическом изменении напряженности электрического поля зависимость Ре от Е описывается петлеобразной кривой - петлей гистерезиса (рис.1.20). Свойства сегнетоэлектриков сильно зависят от температуры. При температурах, превышающих определенное значение Тк, сегнетоэлектрик превращается в обычный диэлектрик, то есть он утрачивает все характерные для него свойства. Эта температура называется точкой Кюри. В некоторых случаях, как, например, для сегнетовой соли, существуют две температуры Кюри (+24°С и -18°С) и сегнетоэлектрические свойства наблюдаются лишь в этом интервале. Наличие одной или нескольких точек Кюри является четвертым характерным свойством всех сегнетоэлектриков. Превращение сегнетоэлектрика в обычный диэлектрик при Т=Тк сопровождается фазовым переходом II рода. Вблизи точки Кюри наблюдается резкое возрастание теплоемкости вещества.

 Причиной описанных сегнетоэлектрических свойств является самопроизвольное возникновение макроскопических областей, в которых дипольные моменты отдельных молекул ориентированы одинаково при отсутствии внешнего электрического поля. Области самопроизвольной поляризации называются доменами (рис.1.21).

Рис.1.21. Области самопроизвольной поляризации (домены) в сегнетоэлектрике.

В каждой соседней области (домене) ориентация диполей различна и кристалл в целом дипольным моментом не обладает. При внесении сегнетоэлектрика во внешнее электрическое поле начинают ориентироваться по полю сразу целые поляризованные области. Поэтому даже в слабых электрических полях сегнетоэлектрик обладает высокой диэлектрической проницаемостью e. Эффект «запаздывания» Ре от Е (рис.1.20) и наличие остаточной поляризации при снятии внешнего поля обусловлены трудностями переориентации, т.е. превращения полностью поляризованного вещества в исходное состояние, имеющее доменное строение.

 Сегнетоэлектрики имеют большое практическое значение в современной электро- и радиотехнике. Например, титанат бария, обладающий высокой химической устойчивостью, механической прочностью и способностью сохранения сегнетоэлектрических свойств в широком температурном интервале, широко применяется в качестве генератора и приемника ультразвуковых волн. Огромные значения e у сегнетоэлектриков дали возможность применять последние при изготовлении конденсаторов. Резкое изменение проводимости вблизи фазового перехода в некоторых сегнетоэлектриках используется для контроля и измерения температуры.

Все сегнетоэлектрики являются хорошими пьезоэлектриками (см. раздел 1.15.6), что позволяет их использовать в детекторах электромагнитных волн.

В цепях постоянного тока и однофазных цепях переменного тока токовую цепь следует собирать от одного из зажимов рубильника и соединять элементы схемы в той же последовательности, в которой они расположены на схеме в руководстве, пока цепь не будет подключена к другому зажиму рубильника.
Электрические токи в металлах, вакууме и полупроводниках