Лабораторные работы по электротехнике Изучение метода компенсации Изучение работы полупроводниковых выпрямителей Изучение кенотронного выпрямителя Изучение колебательного контура Изучение цепи переменного тока

Постоянный ток Лабораторные работы

В трехфазных цепях следует собирать токовую цепь каждой фазы, начиная от соответствующего зажима рубильника вдоль фазы. После сборки основной токовой части схемы, следует перейти к подключению параллельных ветвей и цепей напряжения измерительных приборов. Для узловых соединений нескольких ветвей удобно воспользоваться соединительными гнездами, установленными на столах студентов.

Закон Ома для участка и полной замкнутой цепи

 В 1826 г. немецкий ученый Георг Ом экспериментально установил прямую пропорциональную зависимость между силой тока I в проводнике и напряжением U на его концах: , где G - электрическая проводимость проводника. Величина, обратная проводимости называется электрическим сопротивлением проводника R. Таким образом, закон Ома для участка цепи, не содержащего источника э.д.с., имеет вид . Учитывая, что в общем случае участок цепи может содержать и э.д.с., закон Ома следует представить в виде .

 Сопротивление проводника зависит от его размеров, формы и материала, из которого он изготовлен. Для однородного линейного проводника , где l - длина, S - площадь поперечного сечения проводника, r - удельное электрическое сопротивление, зависящее от материала, из которого изготовлен проводник. Единица сопротивления 1 Ом - это сопротивление такого проводника, в котором при напряжении 1В течет ток в 1А.

 Если цепь замкнута, то , , где R - общее сопротивление всей цепи, включая сопротивление источника э.д.с. Тогда закон Ома для замкнутой цепи следует записать , где e - алгебраическая сумма всех э.д.с., имеющихся в этой цепи.

Принято называть сопротивление источника тока r - внутренним, а сопротивление всей остальной цепи R - внешним. Окончательный вид формулы закона Ома для замкнутой цепи . В системе единиц СИ напряжение и э.д.с. измеряются в Вольтах (В), сопротивление - в Омах (Ом), удельное электрическое сопротивление - в Ом-метрах (Ом×м), электрическая проводимость в Сименсах (См).

 

Рис.2.1. Отрезок проводника.

 Закон Ома можно записать и для плотности тока. Рассмотрим участок электрической длиной dl и поперечным сечением dS (рис.2.1). Сила тока на этом участке , сопротивление , падение напряжения , где Е - напряженность электрического поля в проводнике. Подставив эти параметры в закон Ома для участка цепи, получим . Отсюда  или , где  - удельная электрическая проводимость проводника или удельная электропроводность. В векторном виде имеем   (единицей измерения g в системе СИ является сименс на метр (См/м)). Полученное выражение есть закон Ома в дифференциальной форме : плотность тока в любой точке внутри проводника прямо пропорциональна напряженности поля в этой точке.

Огромные различия в электропроводности веществ позволили создать высокоэффективный метод обработки пищевых продуктов, называемый электростатическим сепарированием. Например, при производственной сушке желатина на алюминиевых сетках в продукт попадают мельчайшие частицы алюминия. Желатин - диэлектрик с удельной проводимостью g=10-8-10-10 См/м, алюминий - проводник,g=36×106 См/м. Такое различие в электропроводности позволяет разделять компоненты посредством поля в электростатическом сепараторе. Электрическая сепарация применяется при очистке муки, подсолнечника, крупы и др. от металлических примесей.

Установлена связь между электропроводностью и качеством некоторых овощей (содержание сахаров, доли биологически активной воды и др.) Поэтому электропроводность является объективным показателем состояния овощей и их устойчивости к длительному хранению.

Сопротивление проводника. Явление сверхпроводимости.

 Способность вещества проводить ток характеризуется его удельной проводимостьюg, либо удельным сопротивлением r. Их величина определяется химической природой проводника и условиями, в частности температурой, при которой он находится. Для большинства металлов r растет с температурой приблизительно по линейному закону: ,  - удельное сопротивление при 0°С, t - температура по шкале Цельсия, a - температурный коэффициент сопротивления близкий к 1/273 К-1 при не очень низких температурах. Так как R~r, то , где  - сопротивление при 0°С. Преобразовав две последние формулы, можно записать  и , где Т – температура по Кельвину. На основе температурной зависимости сопротивления металлов созданы термометры сопротивления - термисторы, позволяющие определять температуру с точностью до 0.003 К.

При низких температурах нарушается линейность зависимости сопротивления металлов от температуры и при температуре 0 К наблюдается остаточное сопротивление Rост. Величина Rост зависит от чистоты материала и наличия в нем механических напряжений. Лишь у идеально чистого металла с идеально правильной кристаллической решеткой Rост ®0 при Т®0 (пунктирная часть кривой).

Кроме этого, в 1911 г. Г.Каммерлинг-Оннес обнаружил, что при Тк = 4.1К сопротивление ртути скачкообразно уменьшается практически до нуля. Эта температура была названа критической, а наблюдаемое явление - сверхпроводимостью. Впоследствии этот эффект был обнаружен у целого ряда других металлов (Ti, Al, Pb, Zn, V и др.) и их сплавов в интервале температур 0.14-20 К. Вещества в сверхпроводящем состоянии обладают необычными свойствами. Однажды возбужденный в них ток может длительно существовать без источника тока. Переход в сверхпроводящее состояние сопровождается скачкообразным изменением теплоемкости, теплопроводности, магнитных свойств вещества. Выяснилось, что внешнее магнитное поле не проникает в толщину сверхпроводника, т.е. магнитная индукция внутри него всегда равна нулю. Явление сверхпроводимости объясняется на основе квантовой теории. К настоящему времени это явление обнаружено также у ряда композиционных веществ (например, соединений металлов и диэлектриков), при этом критическая температура доходит до температуры сжижения азота, что позволяет достаточно экономично использовать явление высокотемпературной сверхпроводимости в инженерной практике. Данное явление позволяет создавать: системы передачи без потерь электрического тока по проводам из таких веществ, системы для накопления электроэнергии, мощные электромагниты, магнитные подвески для различных целей.

Цель работы: приобрести практические навыки по изменению тока, напряжения и мощности в электрических цепях; изучить устройство приборов; провести проверку амперметра, вольтметра, ваттметра; определить, истинный класс точности приборов и дать заключение об их пригодности.
Электрические токи в металлах, вакууме и полупроводниках