Механика | Электростатика | Оптика | Колебания | Электромаг. поле | Физика | Материаловедение | Дифракция | Поляризация | Главную
Интерференция | Радиоактивность | Волны | Термодинамика | Электростатика | Ядерная физика | Строение атома | Математика

Задачник по физике Электромагнетизм

Удельным зарядом частицы называется отношение заряда к массе этой частицы. Удельный заряд можно определить, исследуя движение частицы в электрическом и магнитном полях. Такие исследования проводились в конце XIX века английским ученым Дж.Дж. Томсоном и привели к открытию электрона. При движении электрона в поперечных электрическом или магнитном полях возможно определение удельного заряда по отклонению его траектории от первоначального направления.

Провод в виде тонкого полукольца радиусом R=10 см находится в однородном магнитном поле (B=50 мТл). По проводу течет ток I=10 А. Найти силу F, действующую на провод, если плоскость полукольца перпендикулярна линиям магнитной индукции, а подводящие провода находятся вне поля.

 Решение. Расположим провод в плоскости чертежа перпендикулярно линиям магнитной индукции (рис. 22.2) и выделим на нем малый элемент dl с током. На этот элемент тока Idl будет действовать по закону Ампера сила dF=I[dlB]. Направление этой силы можно определить по правилу векторного произведения или по правилу левой руки.

Используя симметрию, выберем координатные оси так, как это изображено на рис. 22.2. Силу dF представим в виде

где i и j — единичные векторы (орты); dFx и dFyпроекции вектора dF на координатные оси Ох и Оу.

Силу F, действующую на весь провод, найдем интегрированием:

где символ L указывает на то, что интегрирование ведется по всей длине провода L.

Из соображений симметрии первый интеграл равен  нулю

тогда

 

 (1) 

 

Из рис. 22.2 следует, что

где dF — модуль вектора Так как вектор dl перпендикулярен вектору  то  Выразив длину дуги dl через радиус R и угол α, получим

 Тогда 

 

 

Введем dFy под интеграл соотношения (1) и проинтегрируем в пределах от -π/2 до +π/2 (как это следует из рис. 22.2):

Из полученного выражения видно, что сила F сонаправлена с положительным направлением оси Оу (единичным вектором j).

Найдем модуль силы F:

Убедимся в том, что правая часть этого равенства дает единицу силы (Н):

Произведем вычисления:

 

Лекции. Сборник задач с решениями по физике, математике