Расчет электрической цепи постоянного и переменного тока Основные законы электрических цепей Расчёт сложной цепи с помощью законов Кирхгофа Особенности трехфазных цепей Нелинейные электрические цепи

Расчёт сложной цепи с помощью законов Кирхгофа

В качестве примера рассмотрим расчет цепи, изображенной на рисунке 1.4, у которой Е1 = 24 В,  Е2 = 12 В,   r1 = r2 = 4 Ом,   r3 = 1 Ом,  r4 = 3 Ом.

Решение. При расчете с помощью непосредственного применения законов Кирхгофа по первому закону составляем одно уравнение, так как  в цепи два узла. По второму закону составляем два уравнения, так как в схеме три неизвестных тока, а по первому закону было уже составлено одно уравнение. Таким образом, разница между числом неизвестных токов и числом уравнений по первому закону составляет два. Искомая система имеет вид:

 

 

После решения системы уравнений получаем: I1 = 3 А, I2 = 0 A, I3 = – 3 А.

Отрицательный знак у третьего тока указывает, что при произвольном выборе направления этого тока мы ошиблись, истинное направление его, противоположно ранее принятому.

Правильность расчёта токов определяем с помощью баланса мощностей.

Для цепи на рисунке 1.4 имеем:

,

,

.

Баланс мощностей соблюдается, значитзначит, расчет выполнен правильно.

 Методика расчета цепи методом контурных токов

В данном методе за неизвестные величины принимаются расчетные (контурные) токи, которые якобы протекают в каждом из независимых контуров. Таким образом, количество неизвестных токов и уравнений в системе равно числу независимых контуров цепи. Расчет токов ветвей выполняют в следующем порядке:

1 Вычерчиваем принципиальную схему цепи и обозначаем все элементы.

2 Определяем все независимые контуры.

3 Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против). Обозначаем эти токи. Для нумерации контурных токов можно использовать арабские сдвоенные цифры (I11, I22, I33 и т. д.) или римские цифры.

4 По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров. При записи равенства считать, что направление обхода контура, для которого составляется уравнение, совпадает с направлением контурного тока данного контура. Следует учитывать и тот факт, что в смежных ветвях, принадлежащих двум контурам, протекают два контурных тока. Падение напряжения на потребителях в таких ветвях надо брать от каждого тока в отдельности.

5 Решаем любым методом полученную систему относительно контурных токов и определяем их.

6 Произвольно задаемся направлением реальных токов всех ветвей и обозначаем их. Маркировать реальные токи надо таким образом, чтобы не путать с контурными. Для нумерации реальных токов можно использовать одиночные арабские цифры (I1, I2, I3 и т. д.).

7 Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви.

При алгебраическом суммировании без изменения знака берется контурный ток, направление которого совпадает с принятым направлением реального тока ветви. В противном случае контурный ток умножается на минус единицу.

РАСЧЕТ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА С ОДНИМ ИСТОЧНИКОМ ПИТАНИЯ

Соединение источников и потребителей электроэнергии.

В рассмотренной ранее простейшей электрической цепи (см. рис. 1.3) генератор, электроприемник и связывающие их провода, по которым электрическая энергия передается от генератора к приемнику, соединены между собой последовательно. Этот способ соединения применяется для того, чтобы связать в общую электрическую систему разнохарактерные с энергетической точки зрения элементы цепи генераторы, электроприемники и линии передачи электрической энергии. Однородные в энергетическом отношении элементы системы, например генераторы или электроприемники, как правило, соединяются между собой параллельно. При таком способе соединения достигается относительная независимость в управлении и работе отдельных источников и потребителей электроэнергии. Между тем при последовательном соединении практически невозможно включать и отключать отдельно каждый генератор или электроприемник, а также устанавливать для любого из них требуемый режим, работы. Кроме того, при последовательном соединении приемников, например электрических ламп, перегорание одной из них влечет за собой погасание всех остальных.

Совместная параллельная работа генераторов на общую электрическую нагрузку имеет значительные преимущества в сравнении с раздельной работой каждого генератора на свою нагрузку. Во-первых, повышается надежность питания потребителей,

так как в случае аварийного отключения одного из генераторов оставшиеся в работе генераторы могут обеспечить бесперебойное электроснабжение наиболее ответственных нагрузок. Во-вторых, при параллельной работе можно в случае снижения нагрузки (например, в ночное время или в выходные дни) отключать часть генераторов, что повышает экономичность эксплуатации энергетических установок.

В тех случаях, когда один источник (например, электрохимический аккумулятор с э.д.с. Е = 1,25—2,4 В) не обеспечивает требуемого напряжения (110 или 220 В), приходится применять последовательное соединение однотипных источников.

Последовательное включение однотипных приемников (например, электрических ламп) применяется в исключительных случаях, когда напряжение источника значительно превышает номинальное напряжение отдельных электроприемников.

Законы Кирхгофа. При анализе и расчете электрических цепей, образуемых путем последовательного и параллельного соединения источников и потребителей электроэнергии, составляют электрическую схему, на которой показывают, как осуществляются эти соединения (рис 1.6).

Несколько последовательно соединенных элементов, по которым проходит один и тот же ток, образуют ветвь. В частном случае в ветви может быть лишь один элемент. Некоторые ветви (например, АВ, ANMF) содержат как сопротивления r, так и э.д.с. Е. Другие ветви (например, AD, DC, ВС) имеют только сопротивления r.

Расчёт сложной цепи методом контурных токов В цепи, изображённой на рисунке 1.4, рассчитать все токи методом контурных токов. Параметры цепи: Е1 = 24 В, Е2 = 12 В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Метод межузлового напряжения Метод межузлового напряжения даёт возможность весьма просто, без решения систем уравнений, провести анализ и расчёт электрической цепи, содержащей несколько параллельно соединённых активных и пассивных ветвей, включённых между двумя узлами, например, между а и с на рисунке 1.4.

Расчёт сложной цепи методом межузлового напряжения Для цепи, изображённой на рисунке 1.4, рассчитать все токи методом межузлового напряжения.

Параметры цепи: Е1 = 24 В,  Е2 = 12 В, r1 = r2 = 4 Ом, r3 = 1 Ом, r4 = 3 Ом.

Для проверки правильности расчетов необходимо составить баланс мощностей.

Закон Ома. Основные электроэнергетические соотношения для участка цепи устанавливаются законами Ома и Джоуля—Ленца.

I = Ug (1.2)

Коэффициент пропорциональности g называется электрической проводимостью участка. Величина, обратная проводимости.

 

количественно определяет значение сопротивления участка цепи. Сопротивление измеряется в омах, а проводимость — сименсах (сим, или 1/Ом).

Закон Ома для участка цепи часто выражают в следующем виде:

 (1.2 а)

В замкнутой электрической цепи (рис. 1.3) каждый элемент (генератор, провода линии, электроприемник) обладает определенным электрическим сопротивлением.

Через все последовательно соединенные элементы цепи протекает один и тот же ток I. Величина этого тока прямо пропорциональна э.д.с. генератора Е обратно общему сопротивлению всей цепи:

 (1.3)

где rг — сопротивление генератора;

rл — сопротивление проводов линии;

rн — сопротивление нагрузки (электроприемника);

rвнеш = rл+rн — общее сопротивление внешней цепи.


На главную