Магнитные цепи Расчёт параметров трёхфазного трансформатора Расчёт параметров асинхронного трёхфазного двигателя Однофазная мостовая схема выпрямления Фильтрация выпрямленного напряжения

Напряжение на нагрузке несинусоидальное пульсирующее, состоит из полусинусоид вторичного напряжения трансформатора, следующих одна за другой. Оно образовано постоянным напряжением некоторой величины и набором переменных синусоидальных напряжений определённой частоты и амплитуды. Эти синусоидальные напряжения называются гармониками. Величина каждой составляющей напряжения на нагрузке может быть получена после разложения исходной несинусоидальной кривой в ряд Фурье.

Для рассматриваемой схемы в результате разложения имеем:

.

Из разложения видно, что напряжение на нагрузке формируется постоянной составляющей величиной Ud, не зависящей от времени, и гармониками с чётной частотой и убывающей амплитудой . ( и т. д.).

Для оценки качества напряжения на выходе выпрямителя вводится коэффициент пульсации, под которым подразумевается отношение амплитуды основной гармоники в кривой выпрямленного напряжения к среднему значению этого напряжения. Основной считается гармоника с минимальной частотой.

Амплитуда основной гармоники выпрямленного напряжения рассматриваемой схемы

,

следовательно, коэффициент пульсации

. (7.8)

Коэффициент трансформации трансформатора

. (7.9)

Мощность первичной обмотки вентильного трансформатора

,

где Рd ─ мощность на выходе выпрямителя (мощность нагрузки).

Суммарная мощность двух вторичных обмоток трансформатора

. (7.10)

Расчетная мощность трансформатора

. (7.11)

Если на выходе выпрямителя включён сглаживающий дроссель с индуктивностью значительной величины, то мощность трансформатора

. (7.12)

Уменьшение установленной мощности трансформатора объясняется изменением формы тока, протекающего по вторичной обмотке, которая из синусоидальной превращается в прямоугольную.

К достоинствам схемы однофазного выпрямителя с нулевой точкой можно отнести малое количество диодов и протекание тока в любой момент времени только по одному из них. Последнее свойство очень важно для низковольтных выпрямителей, работающих с большими токами, так как позволяет в этом случае повысить КПД выпрямителя за счёт снижения падения напряжения на диодах.

В качестве недостатков рассматриваемой схемы можно отметить большое обратное напряжение на диодах по сравнению с выходным и плохое использование вентильного трансформатора по мощности. Кроме того, при ее реализации необходимо иметь вентильный трансформатор с двумя одинаковыми вторичными обмотками для получения средней точки.

Отмеченные недостатки в меньшей степени присущи однофазной мостовой схеме выпрямления.

Переходную постоянную времени обмотки возбуждения () в секундах следует определять по формуле

. (23)

3.3.4.4. Переходную постоянную времени цепи якоря () в секундах в предположении, что обмотка возбуждения является сверхпроводящей, следует определять по формуле

. (24)

3.3.4.5. Переходную постоянную времени цепи якоря () в секундах с учетом активного сопротивления обмотки возбуждения следует определять по формуле

. (25)

3.3.5. Расчет начального переходного тока в цепи обмотки возбуждения

3.3.5.1. Начальный переходный ток в цепи обмотки возбуждения () в амперах при КЗ во внешней сети следует определять по формуле

, (26)

где

. (27)

3.3.6. Расчет установившегося тока в цепи обмотки возбуждения

3.3.6.1. Если машина постоянного тока имеет независимое возбуждение, то при коротком замыкании во внешней сети следует принимать if¥ = if0; если же машина имеет самовозбуждение, то if¥ близок к нулю.

3.3.7. Определение момента времени, когда токи в цепях якоря и параллельной обмотки возбуждения максимальны, и тока в месте КЗ

Рассмотрим принцип действия на примере р-п-р- транзистора (рис.6.7) Через открытий эмиттерный переход ПБЭ источником UБЭ создается прямой ток Iу образуемый инжекцией (движением) как дырок 1>¸5, так и электронов 6. Дырки 1¸5, пройдя открытый переход ПБЭ, попадают в область базы, где их дальнейшее движение осуществляется по двум направлениям. Первое направление образуют дырки типа 5, которые встречаются в базе с электронами 6 и, рекомбинируя с ними, образуют нейтральные атомы 7. Так как в рекомбинации участвуют электроны 6, поступающие на базу от источника UБЭ, то за счет рекомбинации создается ток базы IБ. Второе направление образуют не прорекомбинировавшие дырки 1¸4, которые достигают границы коллекторного перехода ПБK и, подхваченные ускоряющим полем ЕБК этого перехода, проходят в коллектор и образуют эмиттерную составляющую aIЭ тока коллектора IK. Причем эта составляющая меньше тока эмиттера (a < 1) на величину тока базы 1Б. Так как рекомбинация дырок в базе, осуществимая в результате встречи их с электронами базы маловероятна из-за малой толщины базы и малой концентрации электронов в ней, то подавляющая часть дырок достигает коллектора. Значит эмиттерная составляющая тока коллектора практически равна прямому току эмиттерного перехода. Кроме тока aIЭ через коллекторный переход течет обратный ток Iк.обp, вызванный в нем источником UКБ, который включен к переходу в обратном направлении. Так как обратный ток на 3-5 порядка меньше прямого тока, то в режиме инжекции ток коллектора IK практически равен aIЭ. А при отсутствии инжекции, когда IБ = 0, ток коллектора IK уменьшается в 103 ¸ 105 раз и становится равным току Iк.обp- Причем, так как указанное изменение тока коллектора IK происходит при одном и том же напряжении на коллекторе UKБ, то это эквивалентно изменению сопротивления коллекторного перехода в103 ¸ 105 раз.

Из приведенного описания видно, что назначение базы состоит в том база вызывает из эмиттера на себя поток .зарядов, которые с приобретенной при этом скоростью проходят через базу, как сито и достигают коллектора. Причем, так ток IБ мал. то, очевидно, мощность источника UБЭ, используемая для управления токами IБ, IЭ IK, также мала. Таким образом, биполярный транзистор управляется током, подводимым к базе. Основными параметрами транзистора являются коэффициента передачи тока >a и базы b:

 (6.1)

Коэффициент >b называют коэффициентом усиления транзистора по току. Характерные значения напряжений UБЭ и UK для биполярных транзисторов составляют UБЭ ≤ 0,3 ¸ 0,7 В и UK = 3 ¸ 500 В.


На главную