Расчет электрической цепи постоянного и переменного тока Основные законы электрических цепей Расчёт сложной цепи с помощью законов Кирхгофа Особенности трехфазных цепей Нелинейные электрические цепи

Расчёт разветвлённой электрической цепи постоянного тока

 Для заданной цепи постоянного тока, изображённой на рисунке 1.7,3 определить токи ветвей.

Д а н о :

E = 100 B, r1 = 4 Ом, r2 = 6 Ом, r3 = 5 Ом, r4 = 1 Ом , r5 = 3 Ом.

Решение. Задаёмся направлением токов всех ветвей и обозначаем эти токи на схеме. При определении направления тока следует учитывать тот факт, что ток в ветви течёт от большего потенциала к меньшему. Далее выполняем эквивалентные преобразования в цепи и последовательно упрощаем схему. Начинаем с замены двух последовательно включенных резисторов r3 и r4 одним эквивалентным. Схема упрощается и имеет вид, изображённый на рисунке 1.8, 4а.

Резистор r34 рассчитывают следующим образом (при последовательном соединении r3 и r4):

 

Рисунок 1.7 – Схема разветвлённой электрической цепи постоянного тока.

 r34 = r3 + r4 = 5+1= 6 Ом.

Дальнейшее упрощение схемы происходит в результате замены параллельно включенных резисторов r2 и r34 одним r234 (рисунок 1.8, 4б). Эквивалентное сопротивление двух резисторов, включенных параллельно , можно определить из выражения (1.16):

   r234 = r2r34 / (r2 + r34) = 6 6 / (6 + 6) = 3 Ом.

 Окончательное упрощение цепи происходит после замены трех последовательно соединенных резисторов r1, r234, и r5 одним эквивалентным для всей цепи (рисунок 1.8, 4в):

rэ = r1 + r234 + r5 = 4 + 3 + 3 = 10 Ом.

Рисунок 1.8 – Эквивалентные схемы заданной цепи

 В соответствии с законом Ома

I1 = E/rэ = 100/10 = 10 А.

Так как преобразования выполнялись эквивалентными, то ток I1 будет одинаковым для всех цепей на рисунках 1.73 и 1.84.

Для определения токов I2 и I3 на участке после разветвления цепи, необходимо найти напряжение Uab между точками a и b, а затем, зная сопротивление ветвей, можно рассчитать токи в ветвях, включённых параллельно.

Межузловое напряжение Uab находим из схемы, изображённой на рисунке 1.8, 4б. Здесь оно равно падению напряжения на резисторе r234:

Uab = I1r234 = 10 3 = 30 В.

Токи после разветвления, на основании закона Ома, находим из выражений:

I2 = Uab/r2 = 30 / 6 = 5 А, I3 = Uab / r34 = 30 / 6 = 5 А.

Если подходящий к узлу ток разветвляется только на две ветви (как в данном примере), то путь нахождения токов после разветвления по известному току до разветвления можно сократить, исключая этап нахождения напряжения Uab . Для такого частного случая можно воспользоваться формулой разброса. Структура формулы разброса – ток одной из ветвей после разветвления равен току до разветвления, умноженному на дробь. В числителе этой дроби – сопротивление соседней по отношению к определяемому току параллельной ветви, a в знаменателе – сумма сопротивлений ветвей, включенных параллельно.

Для определения тока I2 формула разброса имеет вид

I 2 = I1 r34/(r2 + r34) = 10 6/ (6 + 6) = 5 A.

Третий ток в соответствии с этой формулой

I3 = I1r2/(r2 + r34) = 10 6/ (6 + 6) = 5 A.

Действием электродвижущей силы генератора обеспечивается определенная разность потенциалов на его зажимах. Зажим с более высоким потенциалом называется положительным и обозначается знаком «плюс». Зажим с более низким потенциалом  называется отрицательным и обозначается знаком «минус». Направление электрического тока внутри источника совпадает с направлением э.д.с, т.е. от зажима (—) к зажиму (+).

Во внешней цепи ток направлен от зажима (+) к зажиму (—), т.е. от точки с более высоким потенциалом к точке с более низким потенциалом.

Прохождение электрического тока в цепи связано с затратой энергии. Эта энергия доставляется в цепь генератором и преобразуется здесь в тепло или в иные виды энергии (механическая работа, химическая энергия и др.).

Элемент цепи, в котором происходит необратимый процесс преобразования электрической энергии в тепловую, называется электрическим сопротивлением и на схемах обозначается в. виде прямоугольника с двумя зажимами (рис. 1.2).

Рассмотрим участок электрической цепи, не содержащий э.дc. Прохождение электрического тока на рассматриваемом участке обусловлено наличием разности потенциалов (φ1 - φ2) на его концах, или напряжением U на этом участке. Направление напряжения принимается от точки 1 с более высоким потенциалом к точке 2, где потенциал ниже, т.е. оно совпадает с  направлением тока на рассматриваемом участке цепи.

Закон Ома. Основные электроэнергетические соотношения для участка цепи устанавливаются законами Ома и Джоуля—Ленца.

Согласно закону Ома, ток I на участке цепи пропорционален напряжению U на этом участке:

Коэффициент пропорциональности g называется электрической проводимостью участка. Величина, обратная электрической проводимости.

количественно определяет значение сопротивления участка цепи. Сопротивление измеряется в Омах, а проводимость — в сименсах (сим, или l/Ом).

Электродвижущая сила Е, так же как и напряжение U, измеряется в вольтах (в).

Формула (1.3) представляет собой закон Ома для замкнутой электрической цепи.

Напряжения на зажимах генератора и нагрузки. Выражение (1.3) можно привести к следующему виду:

E = Irг +Irл + Irн = Irг Irвнеш (1.3а)

Часть э.д.с., которая затрачивается на преодоление внутреннего сопротивления генератора, называется падением (потерей) напряжения в генераторе:

DUг = Irг 

Остальная часть э.д.с. затрачивается на преодоление сопротивления внешней цепи, присоединенной к зажимам генератора, и называется напряжением зажимах генератора:

U = E – Irг = E - >DUг  (1.4)

При уменьшении внешнего сопротивления rвнеш ток I в цепи увеличивается, а напряжение на зажимах генератора Uг уменьшается. Зависимость Uг(I)>называется внешней характеристикой генератора (рис. 1.4).

Внутреннее сопротивление большинства источников, используемых в энергетических установках, как правило, во много раз меньше сопротивления внешней цепи. Чем больше мощность генератора, тем при прочих равных условиях его внутреннее сопротивление.

Если rг«rвнеш, то допустимо пренебречь потерей напряжения в источнике и принять Uг ≈ E.

Рис. 1.3. Не разветвленная цепь постоянного тока

 

Рис. 1.4. Внешняя характеристика генератора

В том случае, когда генератор соединен с нагрузкой линией передачи (рис. 1.3), при прохождении нагрузочного тока по линии в ней теряется часть напряжения >DUл = Irл. В связи с этим напряжение Uнагр на зажимах нагрузки меньше, чем напряжение генератора Uг, на величину DUл:

Uнагр = U – >DUл = E – (rг – rл)


На главную