Начертательная геометрия решение практических задач

Прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости. Плоскости взаимно параллельны, если две пересекающиеся прямые од-ной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Линии уровня параллельных плоскостей взаимно параллель-ны.

Пример 12. Определить натуру угла между скрещивающимися прямыми a и b (рисунок 14-4).

 Через произвольную точку А проведем прямые с и d, параллельные прямым а и b. В полученной плоскости проведем горизонталь и построим натуральную величину Δ А-1-2 (способом засечек, предварительно определив натуру каждой его стороны).

Угол при вершине А будет искомым.

Пример 13. Определить угол наклона прямой n к плоскости

 Б (ΔАВС), (рисунок 14-5).

 Угол наклона прямой к плоскости можно рассматривать как дополнительный угол до .90°между данной прямой и нормалью к плоскости (рисунок 18-а, угол β).

Для решения задачи из произвольной точки 3 прямой d строим нормаль n к плоскости Б. Затем определяем угол между двумя пересекающимися прямыми d и n, для чего через произвольную точку М проводим прямые, параллельные d и n.

Определяем натуру угла между ними; угол дополняющий его до 90° будет искомым.

Пример 14. Определить угол между двумя пересекающимися плоскостями Б (α//b) и Д (сd) (рисунок 14-6).

 Натуральная величина угла между двумя плоскостями измеряется линейным углом, дополняющим до 180 угол между перпендикулярами, опущенными из произвольной точки А на данные плоскости (рисунок 14-6а).

α+φ+90˚=360˚; α+φ=180˚; φ=180˚-α.

Плоские углы φ и α равны линейным углам двух смежных двугранных углов, образованных плоскостями Б и Д.

Алгоритм решения задачи:

1) Вначале находим точку А лежащую на линии пересечения плоскостей (14-6б).

2) Затем восстанавливаем из этой точки перпендикуляры к обеим плоскостям – Б и Д (рисунок 14-6б).

 3) Определяем угол между нормалями к плоскостям из Δ1-2-М, построенного по натуральным величинам его сторон засечками (рисунок 14-6в).

Искомый угол φ=180˚-α(рисунок 14-6г).

г)

Перпендикулярность прямой и плоскости Если прямая перпендикулярна плоскости, то она перпендикулярна ко всякой прямой этой плоскости. На комплексном чертеже перпендикулярность будет сохраняться:

Перпендикулярность плоскостей Две плоскости перпендикулярны, если одна из них проходит через перпендикуляр к другой. Но через прямую линию (перпендикуляр) в пространстве можно провести множество плоскостей перпендикулярных данной.

Взаимная перпендикулярность прямых общего положения Прямой угол между перпендикулярными прямыми общего положения на комплексном чертеже искажается (свойство ортогональной проекции прямого угла).

Решение пространственных задач на комплексном чертеже значительно упрощается, если интересующие нас объекты занимают в пространстве частное положение, т.е. располагаются параллельно или перпендикулярно плоскостям проекций.

Под позиционными задачами мы будем понимать задачи на определение общих элементов различных геометрических фигур. К ним относятся задачи на взаимную принадлежность (взять точку на линии или на поверхности, провести линию на поверхности, провести поверхность через заданные линии и т.д.) и задачи на пересечение различных геометрических объектов (найти точку пересечения линии с поверхностью или линию пересечения двух поверхностей и т.д.). Некоторые позиционные задачи были рассмотрены нами ранее, например, как построить точку на прямой или на плоскости, как определить точку пересечения двух лежащих в одной плоскости прямых и пр.
Аксонометрические изображения довольно широко применяются в конструкторской работе