Начертательная геометрия решение практических задач

Прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости. Плоскости взаимно параллельны, если две пересекающиеся прямые од-ной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Линии уровня параллельных плоскостей взаимно параллель-ны.

Общие понятия о развертывании поверхностей

РАЗВЁРТКИ ПИРАМИДЫ И КОНИЧЕСКОЙ ПОВЕРХНОСТИ.

ОБЩИЕ ПОНЯТИЯ О РАЗВЁРТЫВАНИИ ПОВЕРХНОСТЕЙ

Будем рассматривать поверхность как гибкую нерастяжимую оболочку. В этом случае некоторые поверхности путём преобразования можно совместить с плоскостью без разрывов и складок. Поверхности, допускающие такое преобразование, называются развёртывающимися.

Фигура, получающаяся при совмещении развертывающейся поверхности с плоскостью, называется разверткой.

Построение развёрток имеет большое значение при конструировании изделий из листового материала (сосуды, трубопроводы, выкройки и т.д.).

Поверхности, развертывающиеся геометрически точно: многогранные, конические, торсы, цилиндрические.

Из кривых поверхностей, к числу развёртывающихся относятся те линейчатые поверхности (конические, цилиндрические, торсы), у которых касательная плоскость касается поверхности по её прямолинейной образующей.

Все остальные кривые поверхности относятся к числу не развертывающихся, но при необходимости можно построить их приближённые развёртки.

Для построения развёртки какой-либо криволинейной поверхности её разбивают на такие криволинейные участки, каждый из которых можно аппроксимировать некоторой плоской фигурой, которая требует для определения своей натуры только замеров.

Например:

цилиндр разбивают на прямоугольники (рисунок 16-1а);

прямой конус на равнобедренные треугольники (рисунок 16-1б);

эллиптический цилиндр - на параллелограммы (рисунок 16-1в);

эллиптический конус - на треугольники (рисунок 16-1г);

сферу - на трапеции.

41. РАЗВЁРТКИ ПИРАМИДЫ И КОНИЧЕСКОЙ ПОВЕРХНОСТИ

В качестве примеров рассмотрим построение разверток только четырех поверхностей: пирамиды, конуса, призмы и цилиндра.

41.1 Развертка поверхности пирамиды

Развёртка такой поверхности представляет собой плоскую фигуру, которая получается совмещением всех её граней с одной плоскостью.

Пример 1. Построить развёртку поверхности пирамиды АВСS (рисунок 16-2) и нанести на неё линию МN.

Так как боковыми гранями пирамиды являются треугольники, то для построения развёртки необходимо найти натуральный вид этих треугольников, для чего следует определить истинные длины сторон - ребер пирамиды.

Основание пирамиды лежит в горизонтальной плоскости, следовательно, натуральная величина ребер АВ, ВС и АС уже имеется на чертеже.

Ребро SA является фронталью, поэтому на виде спереди оно изображается в натуральную величину.

Натуру ребер SВ и SС определяем способом прямоугольного треугольника. Одним катетом его является превышение точки S над точками В и С, а вторым - вид сверху ребер SВ и SС.

Затем по трём сторонам строим последовательно все боковые грани пирамиды.

Для нанесения на развёртку линии МN вначале определим истинную величину отрезков AM и В1 и отложим их на развёртке на соответствующих ребрах.

Чтобы нанести точку М, проведём на грани SВС прямую S2 и найдём её положение на развёртке, отложив отрезок В2 (замеренный на виде сверху) на стороне ВC. Затем на виде спереди проведём через точку 4 отрезок 3-4, параллельный ребру ВС и найдём его положение на развёртке, для чего отложим отрезок C4 на стороне SС и через полученную точку проведём прямую 3-4 параллельную ребру ВС. На пересечении прямых S-2 и 3-4 найдём точку N. Соединив полученные точки М, 1, N получим искомую линию.

Под позиционными задачами мы будем понимать задачи на определение общих элементов различных геометрических фигур. К ним относятся задачи на взаимную принадлежность (взять точку на линии или на поверхности, провести линию на поверхности, провести поверхность через заданные линии и т.д.) и задачи на пересечение различных геометрических объектов (найти точку пересечения линии с поверхностью или линию пересечения двух поверхностей и т.д.). Некоторые позиционные задачи были рассмотрены нами ранее, например, как построить точку на прямой или на плоскости, как определить точку пересечения двух лежащих в одной плоскости прямых и пр.
Аксонометрические изображения довольно широко применяются в конструкторской работе