Начертательная геометрия решение практических задач

Прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости. Плоскости взаимно параллельны, если две пересекающиеся прямые од-ной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Линии уровня параллельных плоскостей взаимно параллель-ны.

Построить комплексные чертежи точек: А(15,30,0), В(30,25,15), С(30,10,15), D(15,30,20)

Решение задачи разделим на четыре этапа.

1. А(15,30,0); xA= 15 мм; yA = 30мм; zA = 0.

Как Вы думаете, если у точки А координата zA=0, то какое положение она занимает в пространстве?

   

Рис. 1.1 Рис. 1.2

Так выглядит комплексный чертеж точки А построенный по заданным координатам

Если у точки одна координата равна нулю, то точка принадлежит одной из плоскостей проекции. В данном случае у точки нет высоты: z = 0, следовательно точка А лежит в плоскости П1.

На комплексном чертеже оригинал (т.е. сама точка А) не изображается, есть только ее проекции.

2. В(30,25,15) и С(30,10,15).

На втором этапе объединим построение двух точек.

xB = 30мм; xC = 30мм

yB = 35мм; yC = 10мм

zB = 15мм; zC = 15мм

У точек В и С: xB = xC = 30мм, zB = zC = 15мм

а) Координаты х точек одинаковы, следовательно, в системе П1 – П2 проекции точек лежат на одной линии связи (рис. 1.2),

б) Координаты z точек совпадают, (обе точки одинаково удалены от П1 на 15мм,) т.е. они расположены на одной высоте, следовательно на П2 проекции точек совпадают: В2 = (С2).

в) Направления взгляда при определении видимости показаны на рис. 1.7.

г) Для определения видимости относительно П2 смотрим на рис 1.3. Наблюдатель видит точку В, которая закрывает собой точку С, т.е. точка В расположена ближе к наблюдателю, поэтому на П2 она видима. (См. тема №1).

   

 

 Рис. 1.3  Рис. 1.4

В системе П2-П3 проекции точек также лежат на одной линии связи и видимость определяется по стрелке (рис. 1.2).

Точки В и С - называются фронтально конкурирующими.

3. D(15,30,20); xD = 15мм; yD = 30мм; zD = 20мм.

а) На этом комплексном чертеже (рис. 1.4) построены три проекции точки D(D1, D2, D3).

Все три координаты имеют числовые значения, отличные от нуля, поэтому точка не принадлежит ни одной плоскости проекций.

б) Совместим пространственное изображение А и D (рис. 1.5). В системе П1-П2 проекции точек А и D лежат на одной линии связи, только точка D выше точки А, следовательно D1 - видима, а А1 - невидима (видима на П1 та точка, которая расположена выше).

   

 Рис. 1.5 Рис. 1.6

На четвертом, завершающем этапе, соединим все три фрагмента комплексных чертежей точек А,В,С,D в один общий.

Точки А и D - называются горизонтально конкурирующими.

Рис.1.7

Под позиционными задачами мы будем понимать задачи на определение общих элементов различных геометрических фигур. К ним относятся задачи на взаимную принадлежность (взять точку на линии или на поверхности, провести линию на поверхности, провести поверхность через заданные линии и т.д.) и задачи на пересечение различных геометрических объектов (найти точку пересечения линии с поверхностью или линию пересечения двух поверхностей и т.д.). Некоторые позиционные задачи были рассмотрены нами ранее, например, как построить точку на прямой или на плоскости, как определить точку пересечения двух лежащих в одной плоскости прямых и пр.
Аксонометрические изображения довольно широко применяются в конструкторской работе