Начертательная геометрия решение практических задач

Среди точек линии пересечения двух поверхностей имеются такие точки, которые выделяются своим особым расположением или по отношению к плоскостям проекций или занимают особые места на кривой. Например, самая близкая и самая удаленная точки относительно той или иной плоскости проекций (экстремальные точки); точки, расположенные на крайних образующих некоторых поверхностей, – так называемые точки видимости, имеющие проекции на линиях очертания, точки наибольшей ширины кривой и т.д. Такие точки называются опорными.

Пример 3. . Построить проекции конуса вращения общего вида Ф(i,l). Линия а Ì F, а1 =? (рис.2.22)

Для конусов вращения линия обреза задается окружностью.

Если ось вращения есть горизонталь или фронталь, то одна проекция окружности вырождается в отрезок прямой, перпендикулярный проекции оси и равный диаметру окружности. Другая проекция этой линии представляет собой эллипс, большая ось которого равна диаметру окружности, а малая определяется построением. Направление малой оси эллипса совпадает с проекцией оси вращения, а большая ось перпендикулярна малой.

 

 

 

 

 

 

 

  Рис. 2.22

Разница между большой и малой осями эллипса не должна быть слишком большой или слишком малой. Поэтому угол наклона проекции к оси вращения рекомендуется задавать от 35 до 47° . Для более точного задания эллипса необходимо построить не менее 12 точек.

Очерковые образующие конуса следует проводить касательными к эллипсу, точки К2 и - точки касания.

Чтобы построить проекцию линии а на П2 (а2) на а1 отмечают несколько точек (чем больше, тем точнее будет построена кривая), проводят через них образующие и находят их проекции на соответствующих образующих на П2 (рис.2.23). Главными точками являются точки, принадлежащие очерковым образующим : 1,6 и 8 и точка 5 –наивысшая точка. Точка 6 является границей видимости линии а на П2.

 Рис.2.23

Пример 4. Построить проекции поверхности кольца L(i,l). Обозначить проекции горла n(n1, n2) и экватора m(m1,m2), А(А2), А1 =? В(В1,) В2= ? (рис. 2.24).

Каждая точка образующей на П1, вращаясь вокруг оси i1 опишет траекторию окружности - параллель, на П2 фронтальная проекция параллели проецируется в прямую линию ^ i.

1. Строим проекции правого полумеридиана (рис.2.25).

 2.Достраиваем симметрично проекции левого полумеридиана (рис.2.26).

 Рис.2.24

 Рис.2.25 Рис.2.26

3. Строим недостающие проекции точек А и В. Определяем видимость этих точек относительно П1 и П2, обозначаем проекции горла и экватора (рис.2.27).

Методические рекомендации к решению задачи №2 Условие задачи: Построить проекции поверхности, заданной проекциями геометрической части определителя. Построить недостающую проекцию линии, принадлежащей поверхности.

Построение проекций кривых линейчатых развертывающихся поверхностей. Пример 1. ∑(m, S) – коническая поверхность общего

Построение проекций поверхностей вращения. Любую поверхность вращения можно задать определителем, в состав которого входят ось вращения i и образующая l : S(i,l). Алгоритмическая часть определителя заключается в названии. Т.е. название «поверхность вращения» означает, что каждая точка образующей l, вращаясь вокруг оси i, описывает окружность, плоскость которой перпендикулярна этой оси. Поэтому для определения положения точки на поверхности вращения нужно через точку провести окружность – параллель. Обычно ось поверхности вращения располагают перпендикулярно какой-либо плоскости проекций.

Сначала строим две проекции сферы и недостающую проекцию цилиндра вращения

Сечение поверхности плоскостью Линия, которая получается от пересечения поверхности с плоскостью, является плоской кривой, лежащей в секущей плоскости. Чтобы построить проекции этой линии на чертеже, находят проекции ее отдельных точек и, соединяя одноименные проекции точек плавными кривыми (по лекалу), получают проекции искомой линии
Аксонометрические изображения довольно широко применяются в конструкторской работе